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Fig. 1. Evolution of the normalized Cochran integral Z(~)/Zex p 
and of the X2/200 goodness of fit during the refinement of the 
190 initially random phases of the largest normalized structure 
factors using (a) the conventional tangent formula and (b) the 
X 2 tangent formula. To facilitate the comparison between the 
refinements, the same starting phase values have been used. 
While the conventional tangent formula maximizes Z(~) to its 
global maximum (a), the addition of the X 2 restraint succeeds 
in keeping Z(~) at the correct local maximum (b). 

is also reflected in the high X 2 values computed  at 
the end of  each iteration. 

To avoid this behaviour ,  200 med ium- la rge  E ' s  in 
the range 1.70 to 1.41 have been considered in the X 2 
sum. This represents the addi t ion of  3271 new triplets 
to the 3706 involving only the largest E 's .  40 sets of  

2 initially r a n d o m  phases were refined using the X 
tangent  formula  with ;t = 0.095, recalculating ~bH and 
GH every 38 refined phases.  From the 40 sets, two 
showed the images of  the three symmetry- indepen-  
dent  molecules.  The evolution of  Z ( ~ )  and X 2 for 
one of  these two sets is represented in Fig. l (b ) .  
Compar i son  with Fig. l ( a )  shows that Z ( ~ ) / Z e x p  is 
here closer to 1 and that  X2/200 gradual ly  decreases 
from 4.86 at the first i teration to 0.68 at the end of  
the refinement.  This clearly indicates that  the addi t ion 
of  the X 2 restraint hinders Z ( ~ )  from reaching the 
global maximum.  

Al though derived in space group P1,  the X 2 tangent  
formula  is completely general  and can be appl ied to 
all space groups with only minor  modifications.  

This work has been suppor ted  by the D G I C Y T  
(Project PB89-0036). 
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Abstract 

A probabil ist ic  formula  [Giacovazzo (1991). Acta  
Cryst. A47,256-263]  estimates triplet invariant  phases 

0108-7673 / 92/010030-07 $03.00 

given prior  informat ion on a non-Harke r  Pat terson 
peak u. The formula  requires prior informat ion both 
on the coordinates  of  the peak  and on the scattering 
factors of  the atoms with mutual  distance u. Since 

O 1992 International Union of Crystallography 
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this second type of information is usually not avail- 
able, the formula has been modified so that it depends 
on u and on the Patterson peak intensity in u. Some 
applications are described. The use of some algebraic 
relationships among structure factors arising from the 
positivity and atomicity of the electron density func- 
tion are also considered. 

1. Symbols and abbreviations 

From now on the paper by Giacovazzo (1991) is 
referred to as paper I. Symbols and abbreviations 
coincide with those used in paper I: for the sake of 
brevity they are not listed here. 

2. Introduction 

In paper I it was shown that a Patterson map may 
be used as prior information in probabilistic 
approaches for the estimation of triplet invariants. 
Two types of formula were derived. The first one, of 
algebraic nature, depends on the positivity and 
atomicity of the electron density function. 
Specifically, Cochran's (1952) relationship 

S = J" p3(r) dr 
V 

= Y.' ]Fh.F,~F,3[ cos ¢ = m a x  (1) 
hl+h2+h3=O 

was generalized into 

S ' =  v j" p3(r) dr+aEs=x ~ ~v p ( r +  R~u)p2(r)dr 

+ ~=,~ vl p t r -  Rsu)p2(r) dr]  

= E' IfhlF.~Fl,~l 
h l + h 2 + h 3 = 0  

xcos  ~ { 3 + 2 a  ~=1 ~ cos 2¢rhlRsu 

cos 2-rrb2Rsu + cos 2"rrhaR~u]} + 

-- max (2) 

where a is a numerical factor which is supposed to 
be close to unity and u is a non-Harker Patterson 
peak. The application of (1) and (2) in direct phasing 
procedures requires some caution" remarks concern- 
ing this are made in § 3. 

The second type of formula derived in paper I 
integrates the simplest type of Patterson information, 
the knowledge o fa  non-Harker peak, into the method 
of joint probability distribution functions of structure 
factors (Hauptman & Katie, 1953). The theoretical 
results obtained by Giacovazzo may be listed: 

(a) In the absence of any Patterson information 
the conditional probability of the triplet phase 

invariant @ given the moduli R'  ' ' ,,, R,2, Rh 3 is given 
(Cochran, 1952) by 

P(cI)]R' ' ' h,, Rh2, Rh3) 

~--[2"a'Io(G')] -~ exp (G'  cos ~ )  (3) 

where G ' =  2]R~, R[,~R~,31o3o; 3/2. 
(b) If a Patterson peak u is known, then 

P(4~IR.,, R. 2, R.3. u) 

--~ [27rio(G)]- '  exp [G cos ( ~ -  0)], (4) 

where G and 0 are quantities determined in paper I. 
(c) When several symmetry-independent inter- 

atomic peaks coincide with u it is difficult to obtain 
information about 0. In this case the best procedure 
is not to try to define the enantiomorph. Then 

P(~[Rh,  , R,2, Rh~, U) 

"-'[2"rrlo(G)]-~ exp ( G  cos CI)) (5) 

where 

G = 2Rh, Rh2R,,3M[(lFn,12lu)(lF,,212lu)(lF,,312lu)] - ' /2 

(6) 

3 

M = E3 (h~, h2, h3)-t- E Qioli 
i=1 

rrl 

ai = Z cos 2zrhiRsu, 
s = l  

QI-- ~ '  [fq(hl)fp(h2)fp(ha)+fp(h~)fq(hE)fq(h3)] 
(P,q)  

Q2 = ~ '  [fp(h~)fq(h2)fp(h3)+fq(h~)fp(h2)fq(h3)] 
(P,q) 

Q3 = Z' [fq(h~)fq(h2)fp(ha)+fp(h~)fp(h2)fq(h3)] 
(P,q) 

(P,q)  

R. = IF.I /  (I F.l~lu)l/2. 
The primed summation goes over the pairs of sym- 

metry-independent atoms that correspond to u. 
The quantity G cannot be directly obtained from 

inspection of the Patterson map. In § 4 we will show 
that G may be estimated in terms of Patterson peak 
intensities. In § 5 some applications are described and 
in § 6 the method is generalized to the case in which 
prior information on a set {u} is available. 

3. About the use of some algebraic relationships in 
direct phasing procedures 

Condition (1) states that for the correct structure the 
integral of the cube of the electron density would be 
a maximum. Stanley (1979, 1986) showed that 
maximization of such an integral could be used both 
for the determination of an initial set of signs and 
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for the refinement of a structure. Hoppe (1963), Main 
& Woolfson (1963) and Allegra (1979) described alge- 
braic methods for phase estimation which make use 
of the zero points in the Patterson map [i.e. those 
points for which P(u) is zero or expected to be zero]. 
Rius & Miravitlles (1989) suggested that information 
about zero points would maximize the difference 

I P3(r) d r - a  I P(r + u)p2(r) dr. (7) 

In paper I it was remarked that the above- 
mentioned algebraic relationships had no rigorous 
probabilistic background: thus their active use in the 
phasing process would sometimes be ineffective. 
We want to provide here simple tests of this 
statement. 

The simplest way to check the efficiency of Coch- 
ran's relationship (1) is to calculate the value of S 
for the various trials in a multisolution approach. All 
the triplets which can be found among the NRIF 
reflections with the largest values of R contribute to 
S. We have used seven test structures, the code names 
of which, together with relevant crystallochemical 
data, are shown in Table 1. Default runs of SIR88 
(Burla, Camalli, Cascarano, Giacovazzo, Polidori, 
Spagna & Viterbo, 1989) provided data shown in 
Table 2, where for each structure the NRIF values, 
the maximum (say Smax)  , the minimum (say Smin)  and 
the S values corresponding to the published phases 
(say Scor) are shown. It may be seen that Scor is a 
maximum only for LOGANIN,  in most cases Scot is 
intermediate and in two cases (GOLD and SICA) it 
is a minimum. SICA is a striking case where the 
correct phases correspond to a deep minimum. 

According to these results, direct-methods pro- 
grams based on the maximization of S could have 
some difficulties in solving complex structures. This 
result is not completely unexpected. Indeed, S is 
strongly correlated (see Table 3) with the figure of 
merit MABS 

Table 1. Code name, space group and crystallochemical 
formula for test structures 

Structure code* Space g roup  Molecu la r  fo rmula  Z 

LOGAN1N P212121 CI7H2601o 4 
GOLD Cc C28H16 8 
CEPHAL C2 C18H21NO3 8 
AZET Pca21 C21H16CINO 8 
MUNICH C2 C2oN16 8 
TUR10 P6322 C15H2402 12 
SICAt P21 C2o H3oN408 4 

* The complete references for such structures are not given for the sake 
of brevity. The reader is referred to a magnetic tape distributed by the 
crystallographic group in GSttingen. 

t Capasso, Mazzarella, Sica, Zagari, Cascarano & Giacovazzo (1991). 

Table 2. Values of S,,,~, Stain and Sco r for the seven 
tes t  s t r u c t u r e s  

N R I F  Sma x Smi n Scor 

LOGANIN 258 14552 9311 15627 
GOLD 374 17541 16519 14634 
CEPHAL 334 18945 10500 13393 
AZET 342 19180 12590 14548 
MUNICH 310 19504 12031 13239 
TURI0 219 16161 11061 14346 
SICA 406 42693 29344 13757 

Table 3. Values of MABS and S for trial solutions 
provided by SIR 88 

The last one co r re sponds  to the correct  solution.  

CEPHAL 

MABS S 

1.595 18945 
0.939 11128 
0.973 11537 
0.885 10500 
1.595 18945 
1.233 14639 
1.053 12500 
1.078 12797 
1.055 12530 
1-082 13393 

MABS = E~/E~(~) 

and MABS is a rather ineffective figure of merit. In 
SIR88 the weight associated with MABS is 0.2 the 
weight associated with the so-called psi-zero triplets 
(Cascarano, Giacovazzo & Viterbo, 1987). 

In order to define the possible role of S' in direct 
procedures we introduced into (2) a number of u's 
corresponding to real interatomic vectors and calcu- 
lated the values of S' from the published phases (a 
is assumed to be unity). Results are shown in Table 
4: the maximum and the minimum values of S' 
obtained from the trial solutions are also quoted in 
parentheses. It is easily seen that S' and S have a 
similar behaviour: S' is maximum for LOGANIN,  
minimum for GOLD and SICA, intermediate in other 
cases. 

Table 4. Values of S', S~, and S" for the test structures 

The m a x i m u m  and the m i n i m u m  values o f  S',  S~ and  S" ob ta ined  
for the trial solut ions are quo ted  in parentheses .  

S' S~; S" 
LOGANIN 66 177 - 1990 48 870 

(60066,38218) (3843, -18578) (53988, 25321) 
GOLD 60 215 -7173 51 073 

(71 365, 67 997) (797, -9819) (61 975, 48 760) 
CEPHAL 53 804 -14 492 54 673 

(80 513, 44 820) (-7084, -19 569) (76 407, 40 468) 
AZET 183 123 20 892 22 754 

(259 229, 160 937) (30 827, 21 432) (29 248, 13 740) 
MUNICH 54 890 -72 39 787 

(82024, 50537) (5908, -2881) (55918, 33013) 
TUR10 69 782 -1595 44 632 

(83 974, 69 782) (-4106, -33 141) (81 626, 37 290) 
SICA 172 172 -2817 44091 

(518 971, 385 064) (-1130, -19 518) (147 513, 90 901) 
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Instead of (7) we calculated the (Patterson) sym- 
metry-invariant quantity 

S"= ~ p3(r) dr-a[~,~ ~vP(r+R~u)p2(r) 

+ s:, ~" v j" p(r- Rsu)p2(r)] 

= s -  s'~. (8) 

where u is a zero point of the Patterson. We chose, 
according to Rius & Miravitlles (1989), a positional 
vector u with length about 0.7 A. The values of S" 
are shown in the last column of Table 4. S" is never 
a maximum and for SICA it is a minimum. We also 
quote the values of S~, in order to demonstrate that 
often they are positive: in AZET, S~, is positive both 
for the trial solutions and for the correct structure. 

A further question could be: can the use of a larger 
number of Patterson peaks make the values of S' and 
S" more significant? The expressions of S' and S" for 
the cases in which several u's are known are easy to 
obtain: single summations over s in (2) and (8) must 
be replaced by a double summation over u and over 
s. We have then selected 20 atomic Patterson vectors 
for each structure and calculated S' and S". Our 
conclusion is that, at least for limited sets of data 
such as those phased in a direct procedure, S, S' and 
S" are not expected to be maxima for the correct 
structure. That does not imply that S, S', S" should 
be global maxima for the correct structure and for 
sufficient data. 

4. A directly applicable probabilistic formula exploit- 
ing Patterson information 

We want to express the parameter G defined by (4) 
in terms of experimentally available quantities. We 
divide the numerator and denominator of (4) by 
[EN(h,) Y,N (b2) ~'N (h3)] 1/2 and we use the approxi- 
mation (Cochran & Woolfson, 1955; Karle & Karle, 
1966) 

E3 (hi, h2, h3)/[EN (hi) E/v (h2) EN (h3)] 1/2 

= 0"31 0-32/2".̀  ̀N-ll2 

Then 

= [2Rh, R,2R,31 (qh, qn2qh~)~/2]{ G N-1/2  

q-[~N(hl) ~N (h2)~N (!13)]-1/2 i=, ~ O, ai}, 
where 

L.(p,q) 

We introduce in (9) the approximation 

N 
~',' fp(h,)fq(hi)l~N(hi) = ~' ZpZql E Z2p 

(p,q) (p,q) p=l 
where Zp is the atomic number of the pth atom. Then 

q,= eh,{1 +(21uljulo)a,}= eh,{1 +2I'c~,} (10) 

where ju is the ratio between rn and peak multiplicity, 
I0 and Iu are the Patterson peak heights at the origin 
and at u respectively. 

By analogy, 

Q,a,I[EN (h,) EN (h2) EN (h3)] 1/2 

-- ( z  + z , z ~  ~i/0.2 ( ) 

(P,q) 

= 2 N - i / 2 [  ~' ZpZq]oli/0. 2 
L.(p,q) 

~_ 2N-1/EI" oti. 

Then (6) may be written as 

[ G~-- 2RhlRh2R,2N -1/2 1 +2I'~ ai 
ki=l 

X[ I~i=l ehi(l'l-2ltu°~i)1-1/2 (11) 

where Rh is given by (14) (see later). 
It may be useful to express G in terms of normal- 

ized structure factors R' in order to see how prior 
information on u modifies the triplet invariant relia- 
bility. We obtain 

or:,, o,  R' N - 1 / 2 C  ' G = ~-",,"h2 h3 (12) 
where 

C'=[1+21"(~10li)]/iN=l eh,(l+2I'hai). (13) 

Finally, it is seen that prior Patterson information 
is contained in the modulating term C'; triplet relia- 
bility is enhanced if C ' >  1, reduced if C'< 1. 

5. First applications 

R h is referred to R~ by the relation 

Rh = IF.I~ (I Fhl21 u)'/2 

= (If. l /<lf.I  2)'/2)(<1F.I 2)'/21<If.flu)'/2) 
= R~[ 1 + 2I 'a,]  '12. (14) 

Accordingly, in our phasing method the usual nor- 
malization procedure is run first. Then: 

(a) the renormalized structure factors are obtained 
by application of (14); 
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Table 5. SICA: section of the SIR88 output devoted 
to the statistical analysis of the reflection intensities 

M.f.s.p. stands for mean fractional scattering power o f  the electron 
density obeying pseudotransla t ional  symmetry.  

Classes o f  reflections probably  affected by pseudotranslat ional  
effects: 

Number  o f  Figure o f  
Condi t ion  reflections (IEI 2) merit (M.f.s.p.) 

2 h + k + 2 1 = 4 n  2058 1-497 1.80 16% 

Remarkable  deviations (of  displacive type) from ideal pseudo-  
translational symmetry  are present: 

at (sin 0/A )2 = 0 m.f.s.p. = 35% 
at (sin 0/z)2= max m.f.s.p. = 1% 

(m.f.s.p.) = 16% 

(b) the largest R values are selected for active use 
in the phasing process (such a set does not in general 
coincide with the set of the largest R'); 

(c) triplet reliability is estimated by means of (11): 
for the sake of simplicity the e values are all assumed 
to be unitary; 

(d) the usual convergence-divergence and tangent 
formula procedures are applied. 

In order to obtain further insight into the method 
we describe its application to SICA. Repeated 
attempts at solving such a structure via the most 
powerful direct-methods packages (SIR88 included) 
failed. Statistical analysis of the reflection intensity 
distribution by SIR88 suggested the presence of a 
pseudotranslational vector u = a/2+ b/4+ c/2. The 
calculated mean fractional scattering power of the 
electron density suffering from such a pseudotransla- 
tional symmetry was 16%: remarkable deviations of 
displacive type from ideal pseudosymmetry were also 
suggested (see Table 5). All subsequent trials by 
SIR88 aiming at solving the structure by exploiting 
pseudotranslational symmetry as prior information 
(Cascarano, Giacovazzo & Lui6, 1988) were unsuc- 
cessful. An I E[ 2 Patterson map was then calculated 
which showed the following three largest peaks: 

u v w Intensity 
0.00 0.00 0.00 1000 
0-50 0-27 0-50 429 
0.10 0.00 0-02 106 

whose positions and intensities confirm the SIR88 
statistical analysis. The peak at (0.50, 0.27, 0.50) was 
assumed as prior information in our probabilistic 
approach ( I ' = 0 . 2 1 )  and immediately provided a 
quasicomplete crystal structure. The combined figure 
of merit was 0.82 (the expected value for a correct 
structure is unity), much higher than the best CFOM 
values ( -0 .20)  relative to usual trials by SIR88. 

The role of the Patterson information may be better 
evaluated by a post-mortem analysis of the phasing 
process. If triplet invariants are arranged in increasing 
order of reliability according to Cochran's parameter 
G' then Table 6 follows. For each interval (G'i - G'i+ ~) 

Table 6. SICA: triplets arranged according 
Cochran's reliability parameter G' 

O ; -  G;+, nr % <1~1> (°) 
<0-8 0 

0.8-1-2 1887 63.1 76 
1.2-1.6 3041 62.9 75 
1-6-2.0 1543 65.2 72 
2.0-2-4 789 67.0 69 
2.4-3-0 497 70.2 67 
3.0-3.6 157 66.9 68 
3.6-4.2 48 79.2 51 
4.2-4.8 22 86.4 44 
4.8-5.5 14 85.7 53 
5.5-6.5 1 100.0 55 
6.5-9.0 1 0.0 173 

tO 

Table 7. CEPHAL: triplets arranged according to 
Cochran's reliability parameter G' 

G'i - O'~+ l nr % <1~1> ( ° ) 

<0.8 152 78-3 59 
0.8-1.2 1826 80"3 54 
1.2-1.6 1149 87.5 45 
1.6-2.0 431 91.5 42 
2.0-2.4 122 97-5 34 
2.4-3-0 58 94-8 28 
3-0-3.6 10 100.0 14 
3.6-4-2 3 100"0 32 

the number of triplets (nr) with G~<G'< GI+~ is 
given, % (×100) is the percentage of triplets having 
positive cosine sign and (I q~l) is the average absolute 
deviation of q~ from 27r (the q~'s are calculated from 
the refined structure) in degrees. Table 6 clearly shows 
that SICA is a structure of unusual difficulty: the 
triplet reliability is largely overestimated, the percen- 
tage of negative cosine triplets and the ([q~]) value 
are abnormally high for each interval of G'. The 
reader can usefully compare Table 6 with Table 7 
where analogous data are shown for CEPHAL, a 
structure generally difficult to solve. 

The renormalization process according to (14) radi- 
cally changes the set of active reflections. For SICA, 
where u = (0.50, 0.27, 0.50), 

1 + 2l'ah--~ 1 +41" cos [rr(h + 1)] cos (rrk/2). 

The largest effects of the Patterson information 
occur for: 

(a) reflections satisfying 

h+l=2n (hk+l=2n+l" 
k=4n or = 2 n ( # 4 n ) '  

on assuming 1"=0.21 then Rh = R~,/1"36; 
(b) reflections for which 

{h+l=2n {hk+l=2n+l" 
k = 2 n ( # 4 n )  or =4n  ' 

on assuming I" = 0.21 then R, , - -R ' /0 .4 .  
It seems from the above examples that the estima- 

tion of I" is critical for the success of the method. 
Unfortunately, several values of I" are in practice 
available according to the coefficients used in the 
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Table 8. SICA: 

u 

0.00 
0.50 
0.00 

largest peaks in I FI 2 and I E FI 
Patterson syntheses 

IF[ 2 P a t t e r s o n  I E FI P a t t e r s o n  

v w I n t e n s i t y  u v w I n t e n s i t y  

0.00 0.00 1000 0.00 0.00 0.00 1000 
0.27 0.50 570 0.50 0.27 0.50 487 
0.50 0.00 221 0.00 0.50 0.00 112 

Table 9. SICA: triplets arranged according to the 
parameter G 

G i - G i +  1 

<0.8 
0.8-1.2 
1.2-1.6 
1.6-2.0 
2.0-2.4 
2.4-3.0 
3.0-3-6 
3.6-4.2 
4-2-4.8 
4.8-5.5 

Pos i t i ve  e s t i m a t e d  N e g a t i v e  e s t i m a t e d  
t r i p l e t s  t r i p l e t s  

n r  % <l~l>(°)  n r  % <lFl>(°) 
90 57"8 83 75 46"7 86 

503 56"5 85 36 44.4 85 
2704 62"2 76 
1533 66"2 71 
516 71"1 66 
167 66"5 68 
67 76.1 58 
19 73-7 68 
4 100-0 53 
1 0"0 173 

Patterson function. In Table 8 the positions of the 
three largest peaks in the I FI 2 synthesis (temperature 
factor not removed)and I E FI Patterson synthesis are 
shown. For the first map, I ' = 0 . 2 8  and, for the 
second, I" = 0.24. From a numerical point of view, 
using I ' = 0 . 2 8  instead of ' -  ' =  Iu -0"21  or Iu 0.24 carl 
sometimes provide quite different values of R. Indeed, 
(14) can give rise to abnormally large values of R 
when 2 l ' a h  is close to --1. Furthermore, owing to 
rounding errors in I" or ah, the quantity 1 + 2 I ' a h  
could occasionally become negative, against any 
mathematical or physical expectation. In order to 
make less critical the estimation of I" we limited the 
values of 2I 'ah according to the following scheme: 

if 2IruCeh--<--0"5 then 2I'ah=--0"5. (15) 

Condition (15) is also introduced in (14). 
In order to give a qualitative estimate of the 

influence of the Patterson information on the triplet 
reliability parameter we calculate here the parameter 
C in three typical situations: (1) I" = 0.21, t~ = a2 = 
c~3 -~ 2, then C "-- 0.56; (2) I" = 0.21, al = 2, a2 = o¢ 3 : 

- a l ,  then C =  1.83; (3) I ' = 0 . 2 1 ,  a~= a2= a 3 - - 2 ,  
then C = - 4 .  

The above examples show that C can be consider- 
ably different from unity. In Table 9 triplet invariants 
(found among the largest R values) are ranked 
according to G. It may be observed: 

(1) the quality of triplets selected by the new 
approach is not substantially better than that of trip- 
lets ranked in Table 6. However, G is a more realistic 
parameter than G'. 

(2) Some negative triplets have been identified: 
their <1~1> is close to 7r/2. Since they are excluded 
from any active use, the phasing procedure benefits 
by their omission. 

6. The estimation of • given more Patterson peaks 

In paper I it was shown how Cochran's estimates of 
triplet invariants are modified by prior information 
on one Patterson peak. The conclusive formulas 
(I.18)-(I.20) [and therefore also our formula (11)] 
hold even when u is generated by overlapping of more 
symmetry-independent interatomic vectors 

rj,-r~2 = rj3-rj, = . . . = u  

provided Jl ~ j2 ~ J3 ~ j4 ~ . . . .  
A problem now arises: how triplet invariants can 

be estimated when prior information on a set {u} of 
Patterson peaks is available. If the set of atomic 
positions {rj},~ giving rise to the Patterson vector u~ 
is disjoint from the set {rj}v giving rise to the Patterson 
vector uv then (1.16) may be generalized to 

('Fhl2l{u}) = eh(~N (h) + 2 2u {s~l cos 27rhRsn 

By analogy, (1.18) still holds provided 

G =  M[(IFh,121{u})(IF~2121{u}) 

M = 23 (hi, h2, h3) -b 2,, Q~ 2 cos 2"rrh~Rsu 
s = l  

( )} + Q3 Y. cos2~'h3Rsu . 
s = l  

Under the same hypotheses our formula (14) becomes 

Rh= R~/[1 + ~u(2/Put~h)] 1/2 (16/ 

and (11) is transformed into 

{ 1 × . .  eh,[l+2u(2I'uai)] (17) 
i = 1  

It is not easy to check (particularly for equal-atom 
structures) if hypotheses under which (16) and (17) 
hold are satisfied. Thus the application of (16) and 
(17) is not always justified. 

7. Concluding remarks 

Nixon (1978) recognized that overlapping vectors in 
the Patterson function may cause failures in direct 

. methods. He proposed a simple removal of the over- 
, lapping vectors (which produces modified[E I values) 
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and successfully applied the technique to solve a 
structure resistant to traditional direct methods. 

The probabilistic approach described in paper I 
aims at exploiting Patterson information, both for the 
renormalization of the structure factors and for 
modifying the phase-estimating formulae. The 
approach has been further developed in this paper 
in order to take into account experimental parameters 
such as position and intensity of a Patterson peak. 
The experimental applications described here prove 
that the method may be useful when the distribution 
of the atoms in the unit cell gives rise to a large 
Patterson peak originated by overlapping of several 
interatomic vectors. 

The application of the methods to usual equal-atom 
structures is still questionable because supplementary 
information contained in one (or more) weak Patter- 
son peak has limited influence on the triplet estima- 
tion, unless a more complete analysis of the Patterson 
map is made. It is in this direction that we will address 
our future efforts. 
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Abstract 

Results of convergent-beam reflection high-energy 
electron diffraction (CB-RHEED) calculations are 
presented for the (111) surface of silicon. These 
double rocking calculations are performed using a 
dynamical scattering approach. This is based on 
evaluation of the surface parallel multislice matrix 
for reflection with account taken of the boundary 
conditions. In particular, calculations are shown for 
intensities close to a reflection that is kinematically 
forbidden. Particular note is made of the computa- 
tional simulation of intensity enhancements corre- 
sponding to surface wave resonance conditions. 

I. Introduction 

Reflection electron microscopy (REM) allows the 
direct observation of such surface topographical 
details as single-atom steps, dislocations and surface 
particles (Yagi, 1987). The best REM contrast condi- 
tions are often achieved for incident beam angles 
where electron reflection is not necessarily supported 

by strong bulk diffraction (Uchida, Lehmpfuhl & 
Jager, 1984). The choice of incidence angle is then 
guided by surface diffraction considerations and not 
only by supposed satisfaction of kinematical bulk 
Bragg reflection diffraction. 

One such incident direction which can produce a 
strong reflection corresponds to the so-called surface 
wave resonance (SWR) effect. In SWR one of the 
diffracted beams is trapped in a state close to the 
surface and is not able to propagate in vacuum. This 
can be understood as an Ewald-sphere tangency con- 
dition and incident conditions can be determined by 
a simple geometric construction (Ichimiya, Kambe & 
Lehmpfuhl, 1980). 

Strong contrast effects in REM are also achievable 
by illuminating at incident conditions corresponding 
to 'forbidden'  reflections, e.g. 666 for the Si (111) 
surface (Uchida & Lehmpfuhl, 1987). The reflection 
is then not directly supported by a single bulk diffrac- 
tion event, but by multiple diffraction events 
[ Umweganregung  (von Laue, 1948)]. However, from 
the viewpoint of a surface diffraction process, such 
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